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FATIGUE FA I Lu RE C R I T E R I A

FOR COM IU NE f) CYCLIC STRESS

~Ig by 

*Zvi  H a s h in

ABSTRACT

Failure cri teria for combined cycl ic st ress are

represen ted in te rms of param etr ic familie s of failure

surfaces in stress space. Quadratic approximations and

symme try argumen ts ar e employed in sys tema t ic fashion to

cons truc t isotropic failure cri teria for general three

dimensional states of cyclic stress. Particular atten-

tion has been directed to the important cases of normal

stress-shear stress (bending-torsion) and biaxial stress

cyclings . It is shown that fa i lure cri teria for cycling

wi th and without mean stress (reversed cycling ) have dif-

feren t forms , the latte r admi tt ing simpler represen tat ions.

Visiting Professor - - Department of Materials Science
and Engineering, University of Pennsylvania , Philadel-
phia , Pennsylvania 19104, U.S.A.
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• . IN T R O D U C T I O N

The presen t work is c oncern ed wi th a problem of long standing
• in f at igue fa ilure rese arch - -  the es tabli shmen t o f cr i teri a of

failure when the state of cyclic stress is two or three dimensi onal.

The point of view adopted in the present and iost other inves-

tigations is that there exists a failure criterion in terms of the

cyclic stress components. Thus the aspects of micro-dam age or even

macro—crack propagation are not considered. The prob lem may then

he stated as follows: Given some simple fatigue failur e information

such as S-N curve s for s ingle stress components , obtained experi-

mentally, construct fatigue failure criteria for a more complicated

state of stress.

The problem in this sense resembles establishment of static

failur e criteria or plastic yielding criteria. There is however an

impor tant d i ffer ence which does not appear to have been emphas ized

in the literature in the present context. In contrast to static

stress a stress cycle is defined in terms of two stresses: maxi-

mum and m inimum ampli tude or equivalen t ly, mean and alterna t ing

stress. Thus a failure criterion for combined stress should include

both par ts for each stres s componen t . This wi l l  be di scus sed later .

Much of previou s work on the subject is based on postulates

that failure will occur when a certain physical quantity reaches an

ultimate va]ue . The quantities used are: principal normal stress ,

princi pal  no rma l  str a i n , principal shear st ress , comple te s train

energy dens i ty ,  d is tor t ional s train energy density (equivalent to

octahedral shear stress criterion). These postulates are well

known for static loadings . In cyclic loading the ultimate quantity

(e,~~., maximum stress) is to be obtained from the appropriate S-N

?9 •~3 2~
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L curve .

A well known quadratic criterion for uniaxial stress-shear

(bending-torsion) is due to Cough and Pollard [3]. In contrast to

previously menti oned cri teria it involve s two parame ters to be

det e r m i n e d  by ex pe r imen t.

More recen t review s of various cri teria and compar i son wi th

test data may he found in [1 , 21 . Extensive critical work on eval-

uation and verification of various criteria is due to Findley et al

in numerous papers.

Another type of phenomenological failure criteria is concerned

with planes of failure. Ref. [2] is concerned with fatigue failure

on the maximum shear plane and the establishment of a general three

dimensional failure criterion on this basis. In other work the

orientation of the plane of failure may also he an unknown of the

problem. See [1 , 2] for d i scussion of such theorie s.

All o f the work men t ioned , as well as the present one , are of

deterministic nature , thus disregarding the considerable scatter of

fatigue test data. There arises the fundamental question : which

quantit Y is a deterministic failure criterion for combined stress

cyc l ing supposed to predic t ? Is it the mean l ifet ime to failure

for a number of te s ts under ident ical combined st res s cycling, or

some other statisti cal quantity? It appears that an answer to this

question has not been given . This problem will not be considered

here hut its presence and significance should not be ignored.

2.  F A I L U R E  C R I T E R I A

The maximum an~ minimum ampli tudes of a cyclic stress componen t

are denoted o~~ , respectively. Then the mean and alternating

~~~~~~
_ _ _ _ _  
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I . stresses , o~~. and a~~~, are d e f i n e d  by

in 2 1
= !~~(~ j + o . .)

13 13 13

( 2 . 1 )
• a 2a - . = ½( o . . - a . . )

13 1.] 13

It will he assumed that all stresses cycle at same frequency and

• that their amp litudes do not change during the cycling.

A failure criterion for a three dimensional state of stress

determines the number of cycles to failure N for the given state

of stress. It will be a function not only of the stress components

(2.1) hut also of their phase lags (S . . ,  fig. 1, since it is to be

expected that in-p hase cycle s of s tre ss componen ts wil l  produce dif-

ferent damage than cycl es which are no t in phase. In general ~there

fore) the fa ilure cond it ion is

F( o~~., o~~. ,  ~ . . ,  N) = 1 (2.2)
13 1] 13

It may he noted in passing that the problem may he further corn -

plicated by allowing stress cycle amplitudes to change during cycling.

An important special case is application of one stress cycle corn-

ponent fir st and then ano ther. This si tuat ion would require cumula-

tive damage theory under combined stress and will not be considered

here.

Phase lags are encountered when the stresses are due to a num-

ber of cyclic forces which are not in phase. The writer is not

aware of consid eration in the literature of their influence on

failure under combined stress. It will be henceforth assumed that all

s t res ses cyc le in phase and thus the S~~. vanish. Thus (2.1) becomes

F(o~~~ ~~~~ N) 
= 1 (2,3)
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It should he noted that sign reversal of any a~~. produ ces a

cyc ling which is half a cycle out of phase with respect to other

cycles. Thus this specific out of phase cycling is included In

the formulation.

Two important special cases are vanishing alternating stress

and vanishing mean stress. In the first case

F(o~~. ,  0, N) = F( a’!~.) = 1 (2.4)

which is the static failure crit erion , while in the second

F(0 , a~~., N) = 1 (2.5)
13

which is a failure criterion for reversed cycling.

The situation is now further simplified by assuming that the

ratio

1
11 = (2.~~)

is the same for all stress component cycles . This is the case when

the hody remains elastic under cycling since then all stresses vary

linearly with the instantaneous values of the applied cyclic forces.

In view of (2.1) and (2.6), (2.3) can be written as

F[!~ a~~.(l + Fl), I a~~.( l  - R) , N J = 1 ( 2 . 7 )

which  w i l l  from now on be wr i tte n

• F(a .., Fl , N) = 1 (2.8)

where it is understood that a.~ represent the maximum amplitudes

~~ of s t ress cyc les , and that (2. 8) is dependent on the value of R.
Th erefore , any single component S-N curve to be used in obtaining

.‘ /
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) information about the failure criterion must have this same Fl.

• I t appears that all previou s work on the subject is based on

the form (2.8) thus tacitl y incorporating the assumptions which

have been pointed out above . Consideration of failure criteria of

type (2.3) would introduce tremendous additional complexity.

It is conceptually helpfu l to adopt the usua l stress space

representation of failure criteria. In such a descri ption (2.8)

for a fixed N is a surface in six dimensional stress space (or in

three dimensional principal stress space). The surface is the locus

of all cyclic stress states (with same frequency and same Fl ratio)

wh i ch produce failure after N cycles. When N varies (2 .8) becomes

a parametric family of surfaces with parameter N. The sta t ic

failure criterion is defined by the surface N=0 . Such an approach

has been previously used in [4] for fatigue failure of unidirec-

tional fiber composites in plane stress.

A state of stress a .. which produces failure after N cycles

may he regarded as a vector in stress space connecting the ori gin

to the appropriate point on the N failure surface. It is to he

expected on physical grounds that if all a .. are increased in fixed

mutual ratios the number of cycles to failure will decrease. It

fo l low s that the failure surf ace for N2 is contained within the

failure surface for N 1 < N2. Consequently (2.8) is a non-intersect-

ing family of surfaces which are all contained within the static

fai lure surface , fi g. 2. (It should he noted that the foregoing

reasoning disregards scatter.)

Since infinite failure stresses do not occur in nature the

failure surfaces should be closed. However , an infini te failure

A st ress may at t ime s be a convenient mathema t ical idealizat ion to
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CX ~~FCSS t h e f a c t t h at  a fai lurc ~t r e ss  f o r  one s i t u a t i o n  is l a r g e r

by an o r d e r  of magnitude th aii f o r  a n o t h e r .  1:or e x a m p l e :  f a i  lure

un d c r  h y d r o s t a t i c  c o m p r e s s i o n  as c o m p a r e d  to  f a i l u r e  u n d e r  u n i a x i a l

st r ess . In t h e  ~-I i s e s  r e p r e s e n t a t i o n  of  d i s t o r t i o n a l  e n e r g y  c r i t e r i o n

t h i s  l e a d s  to  a c y l i n d r i c a l  s u r f a c e  which c x t c n d s  to  infinity in

o c t a h e d r a l  d i r e c t  i o n .

At  t h t  i s  point some funct ion i s  c h o s e n  to a p p r o x i m a t e  t h e

f a i l  ore  s u r f a c e  in  a curve f i t t i n g  s e n s e .  S i n c e  e x p e r i e n c e  shows

t h a t  f a i  l u r e  s u r f a c e s  a r e  g e n e r a l l y  curved the s i n i p l c st  r e a s o n a b l e

a p p r o x i m a t i o n  i s  a quadrat ic p o l y n o m i a l .  Ihe coefficients of t h e

p o ly ii omi a 1 must he obtained from test data for loadings %%h ich arc

realizable in the laboratory.

It should be noted that maximum stress and energy density cr1~

teria , used in the past , arc’ also of q u a d r a t i c  nature but by the

nature of the assumption the coefficients are all predetermined

and the only fitting parameter left is the failure value of the

stress or energy. It is therefore not surpr i sing that these en -

ten ia do not in general fit the test data with accur acy. See

e.g. , [1 J .

For purpose of examination of Coug h’ s criterion the

special situation when and 012 are the only nonva n ishing stresses

will be considered. In that event (2.8) is written as

~~°11’ 
012 , Fl , N) = 1 (2 .9)

If the material is isotrop ic or even if it is only transversely

isotropic around the direction of O il the sign of the shear stress

ca n make no d i f f erence in fa i lure . (Sec f i g. 3 for il lus t ra t ion .)

Therefore (2.9) must he an even function of 012.

Next (2.9) is approximated by a quadratic polynomial. Thus

- 
1 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~ 4i
~~~ $ ,,~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r~~~ ~~

- 7 -

A + g 0 11 0 12 + C 
~ 12 + 

~1l 
+ E = I (2.10)

• where the coefficients arc functions of N . The coe f f i c i e n ts B and

)~ m u s t  v a n i s h  to  make  ( 2 . 1 0 )  even in  r, 12 • Furthermore (2.10) must

satisf y the one-dimensiona l S-N curve information

0
11 

= 0 0 12 a ( Fl , N)
(2.11)

a 1~(R , N ) 0 12 = 1)

Consequently, (2.10) assumes the form

2

A + P ‘ + (_i~) = I ( a )I T ( 2 . 1 2 )
A 0 2 

+ D a = 1 (h)

Additional informatio n to determine A and P must come from

failure data under combined s t r e s s .  It is emphasized that according

to previous discussion and 012 c y c l e s  m u s t  have t h e  same Fl ratio.

If the cyclin g is reversed,R = - 1 1 then a change of sign of

all cannot affect the fa il u re for it merely displaces all o~~ cycles

by half a cycle , which is equivalent to chang ing the sign of the

shear stress with respect to normal stress cycles . Consequently

12.12) must he insensitive to a change of sign of and there fore

I)=fl . Thus (2.12) reduces to the simple form

+ ( 0 12) = 1 (2.13)

Equ. ( 2 . 13 )  is the Cough “el l ipse quadr ant” cri terion1 [3J . An

al ternate quadratic criterion due to Cough and Pollard [3) is

(

~Y

)

2 

(• - ) + ~ia (~ - + = 1 (2 . 14)

; •-x~;~ ‘-
~~ — —

•

•~~ ~~~. . $ 
• • 
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w h i c h  i s  c a l l e d  the  “e l l i p s e  arc ” criterion and is seen to he a

special case of (2.12). It appears that the special forms of the

• coefficients in (2.14) were obtained by empirical fitting.

The present interpretation of the Cough criteria implies that:

1) 011 and 
~ 12 cyc l e s  shou ld  h a v e  the same Fl ratio.

O~hcrwise the failure criterion is of type (2.3)

and (2.13-14) cannot he expected to he valid.

2) Criterion (2.13) should he in better agreement

with reversed cycling than with cycling i n c l u d i n g

mean stress.

Tests reported by Coug h,[5J , include combined cycling with

different and with same R ratios. For the case of identical Fl

ratios the results do not especially favor (2.13) over (2.14) for

reversed cycling. It should he noted that failure criteria shown

in (5) were fitted to the data while by present interpretation they

should he expressed in terms of one dimensional failure stresses.

On the other hand data of [6) (76S-T6l Aluminum) for various values

of mean stress do indicate best agreement with (2.13) for reversed

cycling and worsening agreement with increasing mean stress. It

would he worthwhile to conduct a testing program with specific pur-

pose to examine this question .

Cough et al have reported that (2.13) is in better agreement

with ductile metals (steel) while (2.14) is in better agreement

with brittle ones (cast iron). This has also been supported by

test data of Findley 1 [7],in cluding also Aluminum alloys. However ,

this appears to he a purely empirical observation .

The general criterion (2.8) is now reconsidered on the basis

of mater ial symme try. The presen t di scus s ion is limited to the case

_ . :‘~~~ 
:~ii,~~ ~~~~~~~~ -
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of  i s o t r o p ic m a t e r i a l s .  I s o t r o p y  i m p l i e s  t ha t  the f a i l u r e  i s  m dc-

penden t  of the set of axes  to w h i c h  t h e  s t r e s s  t e n s o r  i s  r e f e r r e d .

• I t  f o l l o w s  t h a t  (2 . 8) can at most  he a f u n c t i o n  of t h e  i n v a r i a n t s

of the stress tensor. Thu s
t

1~~, 1 3~ • 
R , N )  = 1 ( 2 . 15)

where

= 0~~~ + + 033 
= 0

1 
+ 0

2 
+ 0

3 
(a)

= 011322 + 022 033 + 033 011 012 0 - 013 0 102 + °2°3 + 030 1 (b ) (2 .16)

011 0~~~ 0 13

13 012 022 023 = 010203 (c)

013 023 0 33

and 01, °2’ 0 3 are the principal stresses associated with a . .

Consider first the situation where one of the princi pal stresses ,

03 say, vanishes. It follows from (2.lôc) that 13 vanishes. h ence ,

(2.15) reduces to

C(11, ‘2’ I3~ R , N) = g (1 1, 12 ) = 1 (2.17)

The functional form (2.17) is easily determined from an experiment

such as bending -torsion in which the only nonvanishin g stresses are f
0 1] ,  0 12 . Ft follows from (2.16) that for this state of stress•

oil = 11 012 
= (2.18)

i f the functi onal rela t ion (2 .9) is known from experimen t it fol lows

at once that (2.17) is defined by

g ( 1 1,  ~~~ 
= f(11, /~Tj) = 1 (2.19)

- I ~~~~~~
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which is equivalent to

f ( q 1 
4 0 2 ,  / 0 10 2 ) = 1 (2.20)

It would he of interest to examine exper imentally whether torsion -

bending data can predict biaxial stres sing data or vice versa , as

• stated by (2.20).

As an example consider the Coug h form ( 2 . 13) . Th en ( 2 . 2 0 )

becomes

(a~ 
+ 0

2) - = 1 (2.21)

Equs. (2.20-21) provide fati gue failure criter ia for biaxial

reversed stressing and are thus of partic ular importance for pres-

sure vessels. Rotvel [2] has conducted an extensive series of

b i axi al p r i n c i p al stress reversed c y c l i n g  te sts wi th th i n  w a l l ed

spec i men s under  i n terna l  pre ssur e and axi al forc e c y c l i n g , i n c l u d i n g

principal stresses of equal and unequal signs. He found that (2.21)

was in good agreement with the experimental data. However , still

better agreement was obtained with an em p irical criterion given by

(;rossland ,[8],ohtained by testing of torsional cycling combined with

st ~t i c  hy drostatic pressure. Because of the static stress component

the latter criterion falls within the category of the much more corn- ~~~ . -

plicated criteria (2.3) and therefore does not apply to the test

data of [2], for rever sed in phase cycl in g . I t mus t be concluded

that the better agreement is fortuitous,be ar i ng in mind the uncer-

tainties of scatter and anisotropy . Fig. 4 reproduces comparison

of the two criteria with non-dimensional test data as given in [1).

In the general three dimensional case (2.8) can be written as

r• .iv ~~~~ ~~ ~~~~~~~~~~~~~~~~ r .

là— 
—~L 

~~~~~~~~~
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0- p , 0 3,  Fl , N) = 1 ( 2 .22 )

which i s the equivalent of (2.15). The simplest case is reversed

cycling, R=-l , of all princip al stresses. In this case it is cvi -

dent on physical grounds that a change of sign of all stresses

cannot affect the failure since it merel y displac es all cycles by

one half cycle. There fore

F(a1, 02, 0 3 1  N) = F ( - o 1,  02, 0 3 1  N)  ( 2 . 2 3 )

In view of (2.16) the equivalent of relation (2.23) in (2.15) form is:

G(11, 
~2’ 

1 31 N) = C (- l 1, 
~2’ ~l 3 1 N) ( 2 . 2 4 )

The fa ilure cri ter ion is now expr essed as a polynomial in s t res ses .

To do this it is convenient to express (2.24) as a polynomial in

the invariants. Becaus e o f t he  r e l a t i o n  ( 2 . 2 4 )  t e rms  w h i c h  change

sign with simultaneous sign change of and 13 cannot appear. Con-

sequently the polynomial has the form

• 
C(I1, 121 1

3
1 N) = A212 + A 1111

2 + A2212
2 

+ 2 A131113 + ... = 1 (2.25)

The terms in (2.25) contain stresses up to power 4. Therefore four

independent items of test ing informa ti on are required to determine

the di f fer ent coef f ic ien ts . It is therefore much s impler to use a

• quadratic approximation which implies that

(‘,(I]l I~~. l~~, N) = A 2!2 + A 11!1
2 

= 1 (2.26)

The coefficien ts in (2.26) are easily determined in terms of the

simple information (2.11) and the identifications (2.18). It

follows that (2.26) assumes the form

_ _ _ _ _  

-. --- - - - ---- — -
.-..
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~~~~~~~~~~~~~~~ 
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(

1 2 
- 

~~~~~~~~~ 

= 1 ( 2 . 2 7 )

This is the most general quadratic approximation to the three dimen-

sional isotrop ic failure condit ion for revers ed cycl ing.

If the stress cycles have mean stresses the conditions (2.23-24)

need not apply. The quadratic approximation to (2.24) is in that

case

2A 1
]

1 + A 11 !1 - = 1 (2 .2 8)
u

wher e

A a  + Al u  i l u

and 0ti ,
T
~ are g iven by (2.11). Additional information for failure

under comb ined st res s cyc l ing is needed to dete rmine A 1 and A 11.
A quadratic approximation of combined 011 , 012 OT 01,02 test data .

can he used to model ( 2 . 2 8 ) .

It is apparent that the present approach is entirely dependent

on isotropy of the material up to failure . While such an assumption

can he cr iticized it must be borne in mind that its abandonment would

complica te the problem by order s of ma gni tude. For if aniso tropy

is to he taken i n t o  account  then the  na tu re  of the d e v e l o p i n g  aniso-

t ropy as a func t ion of number of cycles and state of stress must be

uncover ed. Since this is an enormous under taking it would se em that

from a practical point of view failure criteria would have to be

• limi ted to modeling for each state of stress separately. For example

Cough’ s cri teria for tension-shear should also apply if the material

become s an i so tropic , but the connection between this criterion and

those for other states of stress would be lost.
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3. CONCLUSION
~~~

The problem of establish ment of deterministic fatigue failure cri

teri a for three dimensi onal states of cyclic stress has been considered

in systematic fashion in terms of quadratic approximations of the

failure surface representations in stress space. The f ai l u r e  sur-

face introduced is the locus of all cyclic stress states with iden-

tical fatigue lifetime . Thus the failure surfaces are a parametric

family with parameter N the fatigue 1ifet~irn e .

It has been shown that such a failure surface depends in

general on the mean and alternating parts of all the cyclic stress

components and on their mutual pha se lags . Pr evious work as well

as the present one has dealt with the much simpler case where all

cycles are in phase and all Fl ratios of cyclic stress componPnt

are identical.

A systematic method of quadratic approximations has been used

to derive the Cough criteria for bending-torsion fatigue and general

criteria for three dimensional states of stress. The latter are

based on assumption of material isotropy up to failure. Speci al

attention has been directed to reversed cycling (R = -1) since in

this case the failure criteria admit special simplification .

it is noted that a necessary, and presently lacking, ingredi-

en t of t rea tments such as the presen t one is rec ognit ion of the

stat is t ic al sca tter of fa tigue tes t resul t and the proper ident i-

fic ation of deterministic predictions in terms of means and/or

other moments of the random data.

ACKNOWLEDGMENT

I t is a pleasure to acknowledge numerous help ful and

stimulating conversations with Dr. Campbell Laird .

_  _ _

• 

_

~~~~ ____  _ _ _ _ _ _ _  -
~~~~~~~



-

~~~~~~~~~~~~~

R E F E R E N C E S

1 . F. Rotvel - “ Biaxi al Fat igue Tests with Zero Mean Stresses

• Usin g Tubu l ar Specimens ” , m t. J. Mech. Sci., 12 , 597 (1970).

2. 1). L. McDiar rnid - “A Gene ra l  Criterion for Fatigue Failure under

Multi-axial Stress ” , Proc. 2nd m t .  Conf. Pressure Vessel Tech-

n o l o g y , P t .  I I , 851 , ASM E ( 1 9 7 3 ) .

3. H. .1. Cough and H .  V. Pol la rd - “The S t r e n g t h  of M e t a l s  U n d e r

Combined Alternating Stresses ” , Proc. Inst. Mech. Engrs .

(London), 131 , 3 (1935).

• 4. Z. Ilashin and A. Rotem - “A F a t i g u e  F a i l u r e  C r i t e r i o n  for  F i b e r

Reinforced Ma teri als ” , . J .  Composite Ma ter ia ls , 7 , 448 (1973). 1

5. 11. .1 . Cough - “Eng ineering Steels under Comb ined Cyc l ic  and

Static Stresses ” , Tr ans. ASME , 72 , 113 (1950).

6. W. N.  Findl ey - “Combined Stress Fati gue Strength of 76S-T61

Aluminum Alloy wi th Superimp osed Mean St res ses and Correc ti ons

for Yielding ” , NACA TN2924 (1953).

7. W. N. F i n d l ey  - “Fa tigue of Metals under Combina t ions of Stresse s” , I
Trans. ASME , 79 , 1337 (1957).

8. B. Crossland - “Effect of Large Hydrostatic I’rcs sures on the

Torsional Fatigue Strength of an Alloy Steel” , Proc. Tn t. Con f.

Fa t igue of Metals , 138 , ASME , Inst. Mech. Engrs. , London ( 19S6) .

- —~ 
— 

~-~--,:--- - • .  • :.-• • .~ 4’E i~~~~~L__ .~~~~~V ( 
~~~~~~~~~~~~ 

-
, , • - - - - •  - 

~~-r ~ • •ç• .~ :;. ~~~~~
~-



• —
~~
-

~~
.- w —

~~~
-— -. — - -  —•- —— — -

•~p 
~~~~~ • - 

. 
- - — - — -  - ••— —

a11

R R I \ 1\ ~\t V \f V ~a

~
12

o~ ~J\J\J\~ 2 aP 2
--

~~~ 
——

~~~~~

Hg. 1. C o m b i n e d  S t r e s s  Cy c i  in g  w i t h  P h a s e  Lags

IL

-e

—

~ . —
— 

~~~~~~~~~ - - — ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - . - -  - --- ~~~~ - -~ - - -

S
.

4

I

o 1~
( N)

Fi g. 2. Failure Surface Famil y - S c h e m a t i c

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
-
~IT

•1~~ ~ .~~~ $ J 
—



— Th..- ~~~~~

Li,
_/ _

_

_ • •
/ 

~.}/
°ii ~

a11

Fi g .  3. Si gn Rever sa l  of Shear  S t ress

______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~ 

- ~~~~~ 

,~~~~ !~rt~~i:~
0 I~~~~~~~~~~~~~ N J ~/~~~~~~~~ J



• — -br W~~~~~~~~~~~~~ 
- .  - -

V

I
02 102 u( N)  

____

0.5-

O / Ø U( N)
0.5 1.0 1 1

-0.5 0 - T E S T  DATA

1-1 g. 4. Comparison of “Ellipse Quadrant” Criterion
wi th Test Data for Reversed Cycling of Thin-Walled
Cylinders. (Af ter Rotvel , [2].)
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